
Cisco > Inside Cisco IOS Software Architecture > 8. Quality of Service > Weighted Fair Queuing See All Titles

Weighted Fair Queuing

There are two implementations of Weighted Fair Queuing (WFQ) in IOS:

Platform-independent WFQ

Distributed Weighted Fair Queuing (DWFQ)

All Cisco platforms covered in this book, except Cisco 12000, support platform-independent WFQ. DWFQ is
available only on VIP interfaces on 7500 series routers when dCEF switching is enabled.

Platform-Independent WFQ

IOS has two implementations of platform-independent WFQ:

Flow-Based WFQ

Class-Based CBWFQ

Flow-Based WFQ

Flow-Based WFQ is similar to custom queuing in its effect on traffic streams, but rather than defining a static
policy to sort the packets into the individual queues, the streams are sorted automatically. Flow-Based WFQ
is a legacy congestion management feature in IOS and has been available since IOS version 11.0; we refer
to the legacy Flow-Based WFQ in the rest of this chapter as WFQ.

In WFQ, IP packets are classified into flows using

ToS bits in the IP header

IP protocol type

Source IP address

Source TCP or UDP socket

Destination IP address

Destination TCP or UDP socket

By default, WFQ classifies the traffic streams into 256 different flows; you can change this default using the
dynamic-queuesoption of the fair-queue configuration command. If more flows exist than queues
configured, multiple flows are placed in each queue.

NOTE

WFQ is enabled by default on all serial interfaces with bandwidths (clock rates) less than 2 Mbps.
On the Cisco 7500, any special queuing (priority queuing [PQ], custom queuing [CQ], or WFQ) can
cause each packet to be copied from an MEMD buffer to a DRAM buffer for processing. Copying
data between MEMD and DRAM is very expensive in terms of processing cycles. As a result, use
of platform-independent WFQ should be limited to low speed interfaces on the Cisco 7500.

< BACK Make Note | Bookmark CONTINUE >

Page 1 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

As packets are sorted into queues, they are given weights that are used, in turn, to calculate a sequence
number. The sequence number determines the order in which packets are dequeued and transmitted.

These weights are calculated using the following formula:

Weight = 4096 / (IP Precedence + 1)

As an example, assume three streams of packets arrive into a WFQ system:

A1, A2—500 bytes each with precedence 0

B1, B2—400 bytes each with precedence 0

C1—40 bytes with precedence 3

When the first packet, A1, arrives, it's classified and enqueued into subqueue A. WFQ computes a
sequence number for A1 using the following formula:

Sequence Number = Current Sequence Number + (weight * length)

Where current sequence number is either

The same as the sequence number of the packet last enqueued for transmission, if the subqueue is
empty.

The sequence number of the last packet on the subqueue, if the subqueue is not empty.

The current sequence number when A1 arrives is 0 because it's the first packet to arrive into subqueue A.
Its weight is 4096 (based on the ToS setting in the packet header) and its length is 500 bytes. Therefore, the
sequence number of A1 is calculated as follows:

0 + (4096 * 500) = 2048000

A2 arrives next and WFQ code classifies A2 also into subqueue A. A2 is assigned the sequence number of
4096000 (A1's sequence number + 4096 * 500). A1 is scheduled to be transmitted next. Figure 8-6 shows
the queues at this point.

Figure 8-6. WFQ State after the First Pass

Page 2 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

B1 and B2 arrive next and WFQ classifies them into subqueue B and computes sequence numbers for them
as described in the paragraphs that follow.

Subqueue B is empty when B1 arrives into subqueue B, so B1's sequence number is computed using the
sequence number of the last packet enqueued for transmission (A1):

2048000 + (4096 * 400) = 3686400

B2's sequence number is computed similar to A2's:

3686400 + (4096 * 400) = 5324800

At this point, A1 finishes transmission. WFQ sorts the subqueues based on the sequence numbers of the
packets at the head of the queues. B1 has the smallest sequence number and is enqueued for transmission.
Note that B1 is enqueued for transmission before A2, even though it arrived later. Figure 8-7 shows the
queues at this point.

Figure 8-7. WFQ State

C1 arrives next and is placed into subqueue C. Because subqueue C is empty, C1's sequence number is
based on the sequence number of the last packet enqueued for transmission, which was B1.

3686400 + (1024 * 40) = 3727360

B1 is transmitted at this point and all the queues are resorted again. C1 now has the lowest sequence
number, as shown in Figure 8-8, so it's enqueued for transmission.

Figure 8-8. WFQ State after the Second Pass

Page 3 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

Note that C1 is transmitted before A2 or B2, even though it arrived after these two packets.

So what is the purpose behind all this weighting and sorting? The answer is to provide a fair amount of
bandwidth for each flow based on its type of service (ToS). Because packet lengths are taken into account
when assigning sequence numbers, flows with shorter than average packet lengths can send more packets
than flows with longer than average packet lengths. For example, a flow that normally sends 500 byte
packets can transmit three times as many packets than a flow that normally sends 1500 byte packets.

The classic example of how this is useful is Telnet traffic and FTP traffic. Telnet traffic uses small packets
and the users are affected (and annoyed) by delays. FTP traffic uses large packets and is more tolerant of
delays. WFQ automatically gives Telnet packets an earlier transmission time than an FTP packet that
arrived slightly before it.

If the flows are weighted based on a type of service, flows with a greater type of service setting receive a
greater amount of bandwidth.

Configuring and Monitoring WFQ

To enable WFQ on an interface, configure fair-queue at the interface level:

Router(config-if)# fair-queue [congestive-discard-threshold [dynamic-queues
[reservable-queues]]]

The congestive-discard-threshold (the default is 64)is the number of messages or packets allowed in each
queue. When this threshold is reached, any packets that normally are placed into the queue are dropped.

dynamic-queues(the default is 256) are the WFQ subqueues into which packets are classified.

If a flow has a reservation through RSVP, its traffic is placed into a reservable-queue. The show queueing
interface-number command can monitor the status of WFQ on an interface, as demonstrated in Example
8-7.

Example 8-7. show queueing Monitors WFQ Status on a Router Interface

Router#show queueing serial0 Input queue: 0/75/0 (size/max/drops); Total output drops: 0 Queueing
strategy: weighted fair Output queue: 3/1000/64/0 (size/max total/threshold/drops) Conversations 1/3/256
(active/max active/threshold) Reserved Conversations 0/1 (allocated/max allocated)
(depth/weight/discards/tail drops/interleaves) 2/4096/0/0/0 Conversation 1023, linktype: ip, length: 1504
source: 10.1.1.1, destination: 10.1.5.2, id: 0xC4FE, ttl:120, ToS: 0 prot: 6, source port 1520, destination port
4563

The following list explains the relevant fields from the output of the show queueing serial0. The shaded
portion of Example 8-7 highlights the statistics for a single flow or conversation; a conversation queue is

Page 4 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

the same as a subqueue discussed in the example previously.

Output queue: 3/1000/64/0 (size/max total/threshold/drops)

size is the instantaneous value of the packets in the queuing system.

max total is the per interface limit on the total number of buffers that WFQ can consume.

threshold is the congestive discard threshold described earlier. This is the maximum number
of packets allowed in the sub-queue; this is a soft limit—more than threshold number of
packets actually can be placed in a conversation queue. The max totalnumber protects the
WFQ system from consuming lots of memory and dropping packets when the max total is
reached.

drops is the number of packets dropped by WFQ either for a sub-queue exceeding the
thresholdor the total number of packets in the queues exceeding the max total.

Conversations 1/3/256 (active/max active/threshold)

active indicates the number of flows or conversations active at this instant. The example
shows 1 active conversation.

max active is the total number of conversations ever.

threshold is the maximum number of configured conversation or flow queues. If more
conversations exist than queues configured, multiple conversations are placed in a queue.

(depth/weight/discards/tail drops/interleaves) 2/4096/0/0/0

depth is the number of packets placed into this conversation queue.

weight indicates the weight of each packet in the queue.

discards is the number of packets dropped due to congestive discard threshold exceeded.

tail drops is the number of packets dropped when the max-total was exceeded.

interleaves occur when link layer fragmentation and interleaving is configured. This allows
smaller packets to be interleaved between the fragments of larger packets.

Class-Based WFQ

Flow-Based WFQ, as discussed in the previous section, automatically classifies flows—you don't have any
control over the classification mechanism. Class-Based WFQ (CBWFQ) was developed to provide a
WFQing mechanism that allows flows to be sorted along user-designated policies. CBWFQ, like Flow-Based
WFQ, is a platform-independent feature that is available on all router platforms covered in this book except
the Cisco 12000. Distributed CBWFQ (DCBWFQ) also is available on VIP cards on 7500 series routers.
This section deals only with platform-independent CBWFQ; DCBWFQ is covered in the section, "Distributed
Weighted Fair Queuing."

NOTE

As of this writing, CBWFQ is a relatively new feature; please check the IOS Release s for
information specific to CBWFQ.

Page 5 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

CBWFQ allows you to classify traffic into (up to) 64 classes based on such criteria as the protocol, the
access control lists, and the input interface. Each class is allocated a percentage of the bandwidth available
on the outbound link. By default, packets that overflow any of the traffic class queues are tail dropped, but
Weighted Random Early Detection (WRED), a random drop algorithm discussed later in this chapter, can be
configured instead to manage these drops within each queue.

A default class also can be configured; if no default class is configured, packets that are not otherwise
classified into a user-defined class are sorted by flow and are given best-effort treatment.

NOTE

CBWFQ allows you to configure the bandwidth allocated per class. If a class called "voice" is
allocated 200 kbps of bandwidth but has no traffic, the 200 kbps is distributed among all the other
classes in proportion to the bandwidth configured for the other classes.

Modular CLI for CBWFQ Configuration

CBWFQ configuration uses a new modular command-line interface (CLI), which is being standardized
across all the IOS QoS features and platforms. The modular CLI provides a clean separation between the
specification of a classification policy and the specification of other policies that act based on the results of
the applied classification. The modular CLI has three constructs:

Class-map—

Classifies packets into classes.

Policy-map—

Describes the policy for each class.

Service-policy—

Applies the policies defined to an interface.

Example 8-8 provides a sample CBWFQ configuration.

Example 8-8. Sample CBWFQ Configuration

class-map class1 match access-group 101 ! policy-map policy1 class class1 bandwidth 100 queue-limit 20
class class-default bandwidth 200 random-detect ! interface serial0 service-policy output policy1 ! access-list
101 permit ip any any precedence critical

class-map defines a user-defined class called class1. Traffic is classified into the class1 queue by access-
list 101.

policy-map applies policies to the configured classes. In this example, class1 is allocated 100 kbps of
bandwidth (when the interface is congested). Bandwidth also can be allocated as a percentage using the
percentoption in the bandwidth command, as shown in Example 8-9.

Example 8-9. Configuring Bandwidth as a Percentage

Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)
#policy-map policy1 Router(config-pmap)#class class1 Router#bandwidth percent ? <1-100>
Percentage Router#

The queue-limit command determines the maximum number of packets that can be queued on the class

Page 6 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

queue (the default and the maximum is 64). A policy-map can apply policy for many classes (up to 64).
Note that each policy-map command in Example 8-9 is associated with a previously defined class, tying a
set of policies to a defined class.

The class-default option of the classcommand defines the policy applied to packets that don't fall into any
other configured classes. WRED can be configured per class using the random-detect command under the
class.

After specifying how the packets should be classified, and actions to take on the packets in each class, use
the service-policy command to apply the policies to the traffic passing through an interface. An additional
keyword (input/output) must be specified to indicate whether the policies apply to packets coming in (or
going out of) the interface. CBWFQ can be applied only on packets outbound or an interface.

Monitoring CBWFQ

The show policy policy-map command can be used to display the configuration of all the classes in a policy
map. Example 8-10 shows the output of this command:

Example 8-10. CBWFQ: show policy Output

ubrI19-2#show policy policy1 Policy Map policy1 class class1 Class class1 Bandwidth 100 (kbps) Max
Thresh 20 (packets) class class-default Class class-default Bandwidth 200 (kbps) exponential weight 9 class
min-threshold max-threshold mark-probability -- 0 - - 1/10 1 - -
1/10 2 - - 1/10 3 - - 1/10 4 - - 1/10 5 - - 1/10 6 - - 1/10 7 - - 1/10 rsvp - - 1/10

The random early detection (RED) parameters under class-default are explained in the section "Weighted
Random Early Detection," later in this chapter.

The output of show policy interface is the key to determining how CBWFQ is functioning on the interface.
Example 8-11 displays the output of this command:

Example 8-11. Output of show policy interface to Monitor CBWFQ

ubrI19-2#show policy int Serial0 service-policy output: policy1 class-map: class1 (match-all) 0 packets, 0
bytes 5 minute offered rate 0 bps, drop rate 0 bps match: access-group 101 Output Queue: Conversation
265 Bandwidth 100 (kbps) Packets Matched 0 Max Threshold 20 (packets) (discards/tail drops) 0/0 class-
map: class-default (match-any) 0 packets, 0 bytes 5 minute offered rate 0 bps, drop rate 0 bps match: any 0
packets, 0 bytes 5 minute rate 0 bps Output Queue: Conversation 266 Bandwidth 200 (kbps) Packets
Matched 326 random-detect: mean queue depth: 0 drops: class random tail min-th max-th mark-prob 0 0 0
20 40 1/10 1 0 0 22 40 1/10

The following list explains the relevant output from Example 8-11:

Bandwidth 100 (kbps) Packets Matched 0 Max Threshold 20 (packets)

Packets Matched is the number of packets that matched this class policy.

Max Threshold is the same as the congestive discard threshold in the WFQ section; it's a soft
limit on the number of packets that can be placed in the class queue.

(discards/tail drops) 0/0

discards is the number of packets dropped when Max Threshold is reached.

tail drops is the number of packets dropped when max-total is reached; the default of max-
total is 1000 and cannot be changed currently.

The RED parameters are explained in the section "Weighted Random Early Detection," later in

Page 7 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

the chapter.

Low Latency Queuing

The Low Latency Queuing (LLQ) feature combines strict priority queuing with Class-Based Weighted Fair
Queuing (CBWFQ). Strict priority queuing allows delay-sensitive data, such as voice traffic, to be dequeued
and sent first (before packets in other queues are dequeued). This feature can reduce jitter for voice traffic.
To enqueue a class of traffic to the strict priority queue, you configure the priority command for the class
after you specify the named class within a policy map (classes to which the priority command is applied are
considered priority classes).

Within a policy map, you can give one or more classes priority status. When multiple classes within a single
policy map are configured as priority classes, all the traffic from these classes is enqueued to the same,
single, strict priority queue. Example 8-12 shows class1 from Example 8-11 now configured as a priority
queue.

Example 8-12. Configuring a Priority Queue in CBWFQ for LLQ

policy-map policy1 class class1 priority 100 class class-default bandwidth 200 random-detect

Distributed Weighted Fair Queuing

Distributed Weighted Fair Queuing (DWFQ) is implemented on the VIP on the Cisco 7500. Platform-
independent queuing mechanisms (PQ, CQ, or WFQ) do not scale to high-speed interfaces (greater than 2
Mbps) on the 7500 platform. The main reason for this performance limitation is that packets copied back and
forth between MEMD and DRAM becomes a CPU-intensive operation when interface congestion occurs and
any fancy queuing mechanism is configured.

DWFQ is designed for distributed switching on VIPs and greatly improves WFQ performance.

All packet processing is performed on the VIP's processor, which frees the RSP's processor up for
other tasks (such as running routing protocols).

Packets aren't copied to and from various types of memory within the router; all queuing takes place
within SRAM on the VIPs themselves.

The algorithm used for DWFQ has been optimized for the VIP processor's environment and interface
speeds.

As a result, DWFQ can be enabled on such high speed interfaces as the OC-3 (155 Mbps) interface on a
VIP2-50. DWFQ is capable of classifying packets in four different ways:

Flow-Based

ToS-Based

QoS Group–Based

CBWFQ

Flow-Based DWFQ

Flow-Based DWFQ classifies the traffic destined out an interface based on the following:

ToS bits in the IP header

IP protocol type

Page 8 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

Source IP address

Source TCP or UDP socket

Destination IP address

Destination TCP or UDP socket

Traffic is classified into 512 flows; each flow is serviced round-robin from the calendar queue (see the
"DWFQ Implementation" section later in the chapter for more details). Each of the 512 flows shares an equal
amount of bandwidth.

With distributed Cisco Express Forwarding (dCEF) enabled on the interface, configuring fair-queue on a
VIP interface enables Flow-Based DWFQ. To configure DWFQ on an interface, use the command fair-
queue on an interface for which dCEF is configured already:

 Router(config-if)#fair-queue

ToS-Based DWFQ

ToS-Based DWFQ, also known as Class-Based DWFQ, classifies packets based on the lower two bits of
the precedence field in the IP header, so there are four possible queues. The weight of each queue
determines the amount of bandwidth the traffic placed in this queue receives if the outbound link is fully
congested.

The following command enables ToS DWFQ:

Router(config-if)#fair-queue tos

Class 3, 2, 1, and 0 get default weights of 40, 30, 20, and 10, respectively. The default weights can be
changed using

Router(config-if)#fair-queue tos 0 weight 20

The aggregate weight of all classes cannot exceed 100.

QoS Group–Based DWFQ

Another variant of ToS-Based (or Class-Based) DWFQ is based on QoS groups instead of the ToS bits in
the IP header. QoS groups are created by local policies applied through Committed Access Rate (CAR) and
can be propagated through Border Gateway Protocol (BGP) Policy Propagation. These concepts are
beyond the scope of this book.

Distributed CBWFQ

Distributed ToS-based and QoS group–based WFQ are two forms of CBWFQ. The platform independent
form of CBWFQ using the same modular CLI can also be configured on a VIP interface, including the Low
Latency queuing feature.

DWFQ Implementation

Page 9 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

DWFQ does not perform list sorting and re-ordering of packets like the platform-independent WFQ algorithm
does. Instead, the DWFQ scheduling algorithm uses calendar queues to achieve similar behavior with much
greater efficiency. This is the primary reason DWFQ can be enabled on an OC-3 (155-Mbps) interface with
a VIP2-50.

The difference between the platform-independent WFQ and DWFQ is in the details of how the sorted queue
is managed (that is, the difference is in the implementation details, not in the fundamentals of the algorithm).
WFQ maintains a sorted, linked list where newly arriving packets are inserted into the sorted list based on
the timestamp assigned to the packet. In DWFQ, a calendar queue is used to impose the sorted ordering.
The calendar queue is more efficient in terms of CPU utilization.

Monitoring DWFQ

The primary command used to monitor the state of DWFQ is as demonstrated in Example 8-13.

Example 8-13. show interface fair Monitors DWFQ State

router#show interface fair FastEthernet11/1/0 queue size 0 packets output 44404, wfq drops 1, nobuffer
drops 0 WFQ: aggregate queue limit 6746, individual queue limit 3373 max available buffers 6746 Class 0:
weight 10 limit 3373 qsize 0 packets output 44404 drops 1 Class 1: weight 20 limit 3373 qsize 0 packets
output 0 drops 0 Class 2: weight 30 limit 3373 qsize 0 packets output 0 drops 0 Class 3: weight 40 limit 3373
qsize 0 packets output 0 drops 0

The following list explains the relevant fields in the output of the show interface fair:

Packets output—

Total number of packets transmitted out this interface.

wfq drops—

Packets dropped by DWFQ; an aggregate of the drops in each class. The drops could be due to
three reasons:

The aggregate queue limit was exceeded.

The individual queue limit was exceeded (this is not enforced until two-thirds of the aggregate
queue limit is reached).

There were no buffers available.

nobuffer drops—

Indicates the VIP is running out of SRAM and cannot enqueue packets to the DWFQ system. The
total numbers of buffers available to DWFQ is indicated by max available buffers.

aggregate queue limit—

The maximum number of packets that can be enqueued to the DWFQ system. By default, this is
equal to the but it can be tuned.

max available buffers—

This is the amount of SRAM carved for use by DWFQ. It is computed as a function of the bandwidth
of the interface and the maximum available SRAM.

If there is sufficient SRAM available, then the aggregate queue limit assigned to an interface is

Page 10 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

equal to the number of buffers needed to hold half a second worth of traffic, assuming each
packet is 250 bytes.

If there isn't enough memory to create a half a second worth of buffers, memory is allocated
based on a complex algorithm.

individual queue limit—

The number of packets that are allowed in each class queue; half the aggregate limit by default. This
is a soft limit, and is not enforced until two-thirds of the aggregate queue limit is reached. By default,
the sum of the individual queue limits of each class exceeds the aggregate queue limit; this is
intentional oversubscription and can be tuned.

NOTE

If many large packets belonging to a particular class (class1) arrive in a burst followed by a
few packets of a second class (class2), it is possible for all the buffers to be consumed by
the class1 packets, causing the class2 packets to be dropped due to no buffers. Possible
workarounds are to add SRAM on the VIP or to tune down the aggregate limit and the
individual limits so buffers are not exhausted. If you want to fully protect every class, then
the sum of the individual limits must be less than the aggregate limit. In other words, you
can't allow any oversubscription of the buffers if you want to guarantee one class won't
starve another class.

qsize—

Instantaneous depth of the class queue.

Last updated on 12/5/2001
Inside Cisco IOS Software Architecture, © 2002 Cisco Press

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

<$endrange>CBWFQ (Class-Based Weighted Fair Queuing)
<$endrange>congestion management
 Weighted Fair Queuing (WFQ)
 CBWFQ (Class-Based WRQ)
<$endrange>DWFQ (Distributed Weighted Fair Queuing)
<$endrange>Flow-Based WFQ (Weighted Fair Queuing)
<$startrange>CBWFQ (Class-Based Weighted Fair Queuing)
<$startrange>congestion management
 Weighted Fair Queuing (WFQ)
 CBWFQ (Class-Based WRQ)
<$startrange>DWFQ (Distributed Weighted Fair Queuing)
<$startrange>Flow-Based WFQ (Weighted Fair Queuing)
active field
 show queueing command
calendar queues
 DWFQ

Page 11 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

CBWFQ
 distributed
CEF
 distributed Cisco Express Forwarding (dCEF)
class command
class-default option
 class command
class-map command
CLI (command-line interface)
 CBWFQ (Class-Based WFQ) 2nd 3rd
command-line interface (CLI)
 CBWFQ (Class-Based WFQ) 2nd 3rd
commands
 class
 class-map
 fair-queue 2nd
 queue-limit
 random-detect
 service-policy
 show policy interface
 show policy policy-map
 show queueing 2nd
configuring
 WFQ (Weighted Fair Queuing) 2nd
congestion management
 LLQ (Low Latency Queuing) 2nd
 Weighted Fair Queuing (WFQ) 2nd
 configuring 2nd
 DWFQ (Distributed WFQ) 2nd
 Flow-Based WFQ 2nd 3rd 4th
congestive-discard-threshold (fair-queue command)
depth field
 show queueing command
discards field
 show policy interface command
 show queueing command
distributed CBWFQ
Distributed CBWFQ (DCBWFQ)
distributed Cisco Express Forwarding (dCEF)
Distributed Weighted Fair Queuing (DWFQ)
drops field
 show queueing command
DWFQ (Distributed Weighted Fair Queuing)
dynamic-queues (fair-queue command)
fair-queue command 2nd
field
 sshow policy interface command
Flow-Based DWFQ (Distributed Weighted Fair Queuing) 2nd
input keyword
interleaves field
 show queueing command
keywords
 input
 output
LLQ (Low Latency Queuing) 2nd
Low Latency Queuing (LLQ) 2nd
max active field
 show queueing command
Max Threshold field
 show policy interface command
max total field

Page 12 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

 show queueing command
 fields
modular command-line interface (CLI)
 CBWFQ (Class-Based WFQ) 2nd 3rd
monitoring
 DWFQ 2nd
output keyword
Packets Matched field
 show policy interface command
percent option
 bandwidth command
platform-independent congestion management
 LLQ (Low Latency Queuing) 2nd
 Weighted Fair Queuing (WFQ) 2nd
 CBWFQ (Class-Based WRQ) 2nd
 configuring 2nd
 Flow-Based WFQ 2nd
QoS
 congestion management
 LLQ (Low Latency Queuing) 2nd
 Weighted Fair Queuing (WFQ) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 Weighted Fair Queuing (WFQ), see WFQ (Weighted Fair Queuing)
QoS Group-Based DWFQ (Distributed Weighted Fair Queuing)
queue-limit command
queuing
 LLQ (Low Latency Queuing) 2nd
 Weighted Fair Queuing (WFQ) 2nd
 CBWFQ (Class-Based WRQ) 2nd
 configuring 2nd
 DWFQ (Distributed WFQ) 2nd
 Flow-Based WFQ 2nd
random-detect command
reservable-queue (fair-queue command)
sequence numbers
 WFQ (Weighted Fair Queuing)
service-policy command
show policy interface command
show policy policy-map command
show queueing command 2nd 3rd
size field
 show queueing command
SRAM
 DWFQ
tail drops field
 show policy interface command
 show queueing command
threshold field
 show queueing command
ToS (type of service)
 WFQ (Weighted Fair Queuing)
ToS-Based DWFQ (Distributed Weighted Fair Queuing)
type of service (ToS)
 WFQ (Weighted Fair Queuing)
weight field
 show queueing command
WFQ (Weighted Fair Queuing) 2nd
 CBWFQ (Class-Based WRQ) 2nd
 configuring 2nd
 DWFQ (Distributed WFQ) 2nd
 Flow-Based WFQ 2nd 3rd 4th

Page 13 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

About Us | Advertise On InformIT | Contact Us | Legal Notice | Privacy Policy
© 2001 Pearson Education, Inc. InformIT Division. All rights reserved. 201 West 103rd Street, Indianapolis, IN 46290

Page 14 of 14

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=62

